Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Res Sq ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746163

ABSTRACT

Background and Objective Timely palliative care involvement offers demonstrable benefits for traumatic brain injury (TBI) patients; however, palliative care consultations (PCCs) are used inconsistently during TBI management. This study aimed to employ advanced machine learning techniques to elucidate the primary drivers of PCC timing variability for TBI patients. Methods Data on admission, hospital course, and outcomes were collected for a cohort of 232 TBI patients who received both PCCs and neurosurgical consultations during the same hospitalization. Principal Component Analysis (PCA) and K-means clustering were used to identify patient phenotypes, which were then compared using Kaplan-Meier analysis. An extreme gradient boosting model (XGBoost) was employed to determine drivers of PCC timing, with model interpretation performed using SHapley Additive exPlanations (SHAP). Results Cluster A (n = 86) consisted mainly of older (median [IQR] = 87 [78, 94] years), White females with mild TBIs and demonstrated the shortest time-to-PCC (2.5 [1.0, 7.0] days). Cluster B (n = 108) also sustained mild TBIs but comprised moderately younger (81 [75, 86] years) married White males with later PCC (5.0 [3.0, 10.8] days). Cluster C (n = 38) represented much younger (46.5 [29.5, 59.8] years), more severely injured, non-White patients with the latest PCC initiation (9.0 [4.2, 17.0] days). The clusters did not differ by discharge disposition (p = 0.4) or frequency inpatient mortality (p > 0.9); however, Kaplan-Meier analysis revealed a significant difference in the time from admission to PCC (p < 0.001), despite no differences in time from admission to mortality (p = 0.18). SHAP analysis of the XGBoost model identified age, sex, and race as the most influential drivers of PCC timing. Conclusions This study highlights crucial disparities in PCC timing for TBI patients and underscores the need for targeted strategies to ensure timely and equitable palliative care integration for this vulnerable population.

2.
World Neurosurg ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38649021

ABSTRACT

Spasticity is a potentially debilitating symptom of various acquired and congenital neurologic pathologies that, without adequate treatment, may lead to long-term disability, compromise functional independence, and negatively impact mental health. Several conservative as well as non-nerve targeted surgical strategies have been developed for the treatment of spasticity, but these may be associated with significant drawbacks, such as adverse side effects to medication, device dependence on intrathecal baclofen pumps, and inadequate relief with tendon-based procedures. In these circumstances, patients may benefit from nerve-targeted surgical interventions such as (i) selective dorsal rhizotomy, (ii) hyperselective neurectomy, and (iii) nerve transfer. When selecting the appropriate surgical approach, preoperative patient characteristics, as well as the risks and benefits of nerve-targeted surgical intervention, must be carefully evaluated. Here, we review the current evidence on the efficacy of these nerve-targeted surgical approaches for treating spasticity across various congenital and acquired neurologic pathologies.

3.
Cancer Res ; 83(15): 2527-2542, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37219874

ABSTRACT

Glioblastoma (GBM) is an immunologically "cold" tumor that does not respond to current immunotherapy. Here, we demonstrate a fundamental role for the α-isoform of the catalytic subunit of protein phosphatase-2A (PP2Ac) in regulating glioma immunogenicity. Genetic ablation of PP2Ac in glioma cells enhanced double-stranded DNA (dsDNA) production and cGAS-type I IFN signaling, MHC-I expression, and tumor mutational burden. In coculture experiments, PP2Ac deficiency in glioma cells promoted dendritic cell (DC) cross-presentation and clonal expansion of CD8+ T cells. In vivo, PP2Ac depletion sensitized tumors to immune-checkpoint blockade and radiotherapy treatment. Single-cell analysis demonstrated that PP2Ac deficiency increased CD8+ T-cell, natural killer cell, and DC accumulation and reduced immunosuppressive tumor-associated macrophages. Furthermore, loss of PP2Ac increased IFN signaling in myeloid and tumor cells and reduced expression of a tumor gene signature associated with worse patient survival in The Cancer Genome Atlas. Collectively, this study establishes a novel role for PP2Ac in inhibiting dsDNA-cGAS-STING signaling to suppress antitumor immunity in glioma. SIGNIFICANCE: PP2Ac deficiency promotes cGAS-STING signaling in glioma to induce a tumor-suppressive immune microenvironment, highlighting PP2Ac as a potential therapeutic target to enhance tumor immunogenicity and improve response to immunotherapy.


Subject(s)
Glioblastoma , Glioma , Interferon Type I , Humans , Immunity, Innate , Interferon Type I/metabolism , Nucleotidyltransferases/genetics , Tumor Microenvironment
4.
Gut Pathog ; 15(1): 19, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085870

ABSTRACT

The gut microbiome derived short chain fatty acids perform multitude of functions to maintain gut homeostasis. Here we studied how butyrate stymie enteric bacterial invasion in cell using a simplistic binary model. The surface of the mammalian cells is enriched with microdomains rich in cholesterol that are known as rafts and act as entry points for pathogens. We showed that sodium butyrate treated RAW264.7 cells displayed reduced membrane cholesterol and less cholera-toxin B binding coupled with increased membrane fluidity compared to untreated cells indicating that reduced membrane cholesterol caused disruption of lipid rafts. The implication of such cellular biophysical changes on the invasion of enteric pathogenic bacteria was assessed. Our study showed, in comparison to untreated cells, butyrate-treated cells significantly reduced the invasion of Shigella and Salmonella, and these effects were found to be reversed by liposomal cholesterol treatment, increasing the likelihood that the rafts' function against bacterial invasion. The credence of ex vivo studies found to be in concordance in butyrate fed mouse model as evident from the significant drift towards a protective phenotype against virulent enteric pathogen invasion as compared to untreated mice. To produce a cytokine balance towards anti-inflammation, butyrate-treated mice produced more of the gut tissue anti-inflammatory cytokine IL-10 and less of the pro-inflammatory cytokines TNF-α, IL-6, and IFN-γ. In histological studies of Shigella infected gut revealed a startling observation where number of neutrophils infiltration was noted which was correlated with the pathology and was essentially reversed by butyrate treatment. Our results ratchet up a new dimension of our understanding how butyrate imparts resistance to pathogen invasion in the gut.

5.
J Clin Invest ; 133(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36757811

ABSTRACT

Stimulator of IFN genes type I (STING-Type I) IFN signaling in myeloid cells plays a critical role in effective antitumor immune responses, but STING agonists as monotherapy have shown limited efficacy in clinical trials. The mechanisms that downregulate STING signaling are not fully understood. Here, we report that protein phosphatase 2A (PP2A), with its specific B regulatory subunit Striatin 4 (STRN4), negatively regulated STING-Type I IFN in macrophages. Mice with macrophage PP2A deficiency exhibited reduced tumor progression. The tumor microenvironment showed decreased immunosuppressive and increased IFN-activated macrophages and CD8+ T cells. Mechanistically, we demonstrated that Hippo kinase MST1/2 was required for STING activation. STING agonists induced dissociation of PP2A from MST1/2 in normal macrophages, but not in tumor conditioned macrophages. Furthermore, our data showed that STRN4 mediated PP2A binding to and dephosphorylation of Hippo kinase MST1/2, resulting in stabilization of YAP/TAZ to antagonize STING activation. In human patients with glioblastoma (GBM), YAP/TAZ was highly expressed in tumor-associated macrophages but not in nontumor macrophages. We also demonstrated that PP2A/STRN4 deficiency in macrophages reduced YAP/TAZ expression and sensitized tumor-conditioned macrophages to STING stimulation. In summary, we demonstrated that PP2A/STRN4-YAP/TAZ has, in our opinion, been an unappreciated mechanism that mediates immunosuppression in tumor-associated macrophages, and targeting the PP2A/STRN4-YAP/TAZ axis can sensitize tumors to immunotherapy.


Subject(s)
Glioblastoma , Tumor-Associated Macrophages , Animals , Humans , Mice , Calmodulin-Binding Proteins , Macrophages , Protein Processing, Post-Translational , Signal Transduction , Tumor Microenvironment , Interferon Type I/metabolism
6.
Toxicol Lett ; 374: 19-30, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36473683

ABSTRACT

This discourse attempts to capture a few important dimensions of gut physiology like microbial homeostasis, short chain fatty acid (SCFA) production, occludin expression, and gut permeability in post-natal life of mice those received arsenic only during pre-natal life. Adult Balb/c mice were fed with 4 ppm arsenic trioxide in drinking water during breeding and gestation. After the birth of the pups, the arsenic water was withdrawn and replaced with clean drinking water. The pups were allowed to grow for 28 days (pAs-mice) and age matched Balb/c mice which were never exposed to arsenic served as control The pAs-mice showed a striking reduction in Firmicutes to Bacteroidetes (F/B) ratio coupled with a decrease in tight junction protein, occludin resulting in an increase in gut permeability, increased infiltration of inflammatory cells in the colon and decrease in common SCFAs in which butyrate reduction was quite prominent in fecal samples as compared to normal control. The above phenotypes of pAs-mice were mostly reversed by supplementing 5% sodium butyrate (w/w) with food from 21st to 28th day. The ability of butyrate in enhancing occludin expression, in particular, was dissected further. As miR122 causes degradation of Occludin mRNA, we transiently overexpressed miR122 by injecting appropriate plasmids and showed reversal of butyrate effects in pAs-mice. Thus, pre-natal arsenic exposure orchestrates variety of effects by decreasing butyrate in pAs-mice leading to increased permeability due to reduced occludin expression. Our research adds a new dimension to our understanding that pre-natal arsenic exposure imprints in post-natal life while there was no further arsenic exposure.


Subject(s)
Arsenic , Lower Gastrointestinal Tract , MicroRNAs , Occludin , Prenatal Exposure Delayed Effects , Animals , Mice , Arsenic/adverse effects , Arsenic/toxicity , Butyric Acid/metabolism , Drinking Water/chemistry , Gastrointestinal Tract/metabolism , Lower Gastrointestinal Tract/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Occludin/genetics , Occludin/metabolism , Permeability , Prenatal Exposure Delayed Effects/metabolism
7.
Front Cell Infect Microbiol ; 12: 1011386, 2022.
Article in English | MEDLINE | ID: mdl-36601302

ABSTRACT

Introduction and objective: Cholesterol homeostasis is a culmination of cellular synthesis, efflux, and catabolism to important physiological entities where short chain fatty acid, butyrate embodied as a key player. This discourse probes the mechanistic molecular details of butyrate action in maintaining host-cholesterol balance. Methods: Hepatic mir-122 being the most indispensable regulator of cholesterol metabolic enzymes, we studied upstream players of mir-122 biogenesis in the presence and absence of butyrate in Huh7 cells and mice model. We synthesized unique self-transfecting GMO (guanidinium-morpholino-oligo) linked PMO (Phosphorodiamidate-Morpholino Oligo)-based antisense cell-penetrating reagent to selectively knock down the key player in butyrate mediated cholesterol regulation. Results: We showed that butyrate treatment caused upregulation of RNA-binding protein, AUF1 resulting in RNase-III nuclease, Dicer1 instability, and significant diminution of mir-122. We proved the importance of AUF1 and sequential downstream players in AUF1-knock-down mice. Injection of GMO-PMO of AUF1 in mouse caused near absence of AUF1 coupled with increased Dicer1 and mir-122, and reduced serum cholesterol regardless of butyrate treatment indicating that butyrate acts through AUF1. Conclusion: The roster of intracellular players was as follows: AUF1-Dicer1-mir-122 for triggering butyrate driven hypocholesterolemia. To our knowledge this is the first report linking AUF-1 with cholesterol biogenesis.


Subject(s)
Gastrointestinal Microbiome , MicroRNAs , Animals , Mice , Butyrates , Cholesterol , Heterogeneous Nuclear Ribonucleoprotein D0 , MicroRNAs/genetics , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...